945. Molecular Polarisability. Specificution of the Phosphite, Phosphate, Thiophosphate, and Arsenite Group Polarisability Ellipsoid Semi-axes.

By M. J. Aroney, R. J. W. Le Fèvre, and J. Saxby.

On the basis of polarisability ellipsoids of revolution, major and minor semi-axes for groups $\mathrm{O}_{3} \mathrm{X}$, where $\mathrm{X}=\mathrm{P}, \mathrm{PO}, \mathrm{PS}$, or As, appear as 0.410 and $0.359,0.416$ and $0.284,0.869$ and 0.492 , and 0.535 and 0.421 (all in 10^{-23} c.c. units), respectively. "Effective" longitudinal and transverse polarisabilities of the $\mathrm{O}-\mathrm{P}$ and $\mathrm{O}-$ As bonds are estimated as $b_{\mathrm{L}}^{0-\mathrm{P}}=0.086$, $b_{\mathrm{T}}^{\mathrm{O}-\mathrm{P}}=0.145, b_{\mathrm{L}}^{\mathrm{O}-\mathrm{As}}=0.066$, and $b_{\mathrm{T}}^{\mathrm{O}-\mathrm{As}}=0.196$ (also in 10^{-23} c.c. units).
OUR investigation of the configurations of molecules (RO) ${ }_{3} \mathrm{X}$ (where X is $\mathrm{P}, \mathrm{PO}, \mathrm{PS}$, and As), as solutes in non-polar media, requires a knowledge of the anisotropic polarisabilities of each bond or group in the system. Accordingly the present work has been undertaken to determine the polarisability specifications of the groups $\mathrm{O}_{3} \mathrm{P}, \mathrm{O}_{3} \mathrm{PO}, \mathrm{O}_{3} \mathrm{PS}$, and $\mathrm{O}_{3} \mathrm{As}$, to supplement previous data ${ }^{1,2}$ for the bonds $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}$, and $\mathrm{C}-\mathrm{H}\left(b_{\mathrm{L}}^{\mathrm{C}-\mathrm{C}}=0.099, b_{\mathrm{T}}^{\mathrm{C}-\mathrm{C}}=\right.$ $\left.b_{\mathrm{V}}^{\mathrm{C}-\mathrm{C}}=0.027 ; b_{\mathrm{L}}^{\mathrm{C}-\mathrm{O}}=0.090, b_{\mathrm{T}}^{\mathrm{C}-\mathrm{O}}=b_{\mathrm{V}}^{\mathrm{C}-\mathrm{O}}=0.043 ; b_{\mathrm{L}}^{\mathrm{C}-\mathrm{H}}=b_{\mathrm{T}}^{\mathrm{C}-\mathrm{H}}=b_{\mathrm{V}}^{\mathrm{C}-\mathrm{H}}=0.064\right) . *$

Experimental

Materials, Apparatus, ctc.-The solutes were prepared and purified by the method of Verkade and Reynolds. ${ }^{3}$ Apparatus, techniques, symbols used, and methods of calculation have been described before. ${ }^{1,4}$ Measurements, taken in all cases at 25°,
 are listed in Table 1; ΔB is the difference found between the Kerr constant of the solvent and those of solutions containing weight fractions w_{2} of solute. Estimates of $\delta\left(=\sum 10^{7} \Delta B / B_{1} \sum w_{2}\right)$ deduced from Table 1 are given in Table 2 together with the various other data required for the calculation of the molar Kerr constants listed therein. The following constants apply at 25° to dioxan: $\varepsilon_{1}=2.2090 ; d_{1}=1.0280 ;\left(n_{1}\right)_{\mathrm{D}}=$ $1.4202 ; 10^{2} B_{1}=0.068 ; 10^{12}{ }_{\mathrm{s}} K_{1}=0.0116$.

* Polarisabilities are expressed throughout this paper as 10^{-23} c.c. units.
${ }^{1}$ Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem., 1955, 5, 261.
${ }^{2}$ Le Fèvre, unpublished data.
${ }^{3}$ Verkade and Reynolds, J. Org. Chem., 1960, 25, 663.
${ }^{4}$ Le Fèvre and Le Fèvre, Chap. XXXVI in " Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ., Inc., New York, London, 3rd edn., Vol. I, p. 2459.

Table 1.
Incremental Kerr constants of solutions in dioxan at 25°.

4-Methyl-1-phospha-2,6,7-trioxabicyclo[2,2,2]octane ($\mathrm{I} ; \mathrm{X}=\mathrm{P}$).								
$10^{6} w_{2}$		2831	3060	3420	3528	3997	44.72	4505
$10^{7} \Delta B$		$0 \cdot 043$	0.048	0.051	$0 \cdot 054$	$0 \cdot 059$	$0 \cdot 066$	0.065
whence $\sum 10^{7} \Delta B / \sum w_{2}=15 \cdot 0$.								
4-Methyl-1-phospha-2,6,7-trioxabicyclo [2,2,2]octane 1-oxide ($\mathrm{I} ; \mathrm{X}=\mathrm{PO}$).								
$10^{6} w_{2}$			672	704	762	763	881	967
$10^{7} \Delta B$			0.037	0.037	0.042	0.043	0.050	0.054
whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=55 \cdot 4$.								
4-Methyl-1-phospha-2,6,7-trioxabicyclo[2,2,2]octane 1-sulphide ($\mathrm{I} ; \mathrm{X}=\mathrm{PS}$)								
$10^{6} w_{2}$	562	644	645	682	714	761	829
$10^{7} \Delta B$	0.048	0.054	0.055	0.057	0.064	$0 \cdot 068$	0.073
whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=86 \cdot 6$.								
4-Methyl-1-arsa-2,6,7-trioxabicyclo [2,2;2]octane ($\mathrm{I} ; \mathrm{X}=\mathrm{As}$)								
$10^{5} w_{2}$			1049	1594	1740	2189	2209	2501
$10^{7} \Delta B$			0.050	0.090	0.093	$0 \cdot 113$	0.096	$0 \cdot 116$
whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=4.95 . *$								

* Solutions of this substance, when placed in the Kerr cell, quickly became yellow, so that the measurements of ΔB were made very rapidly; this results in a greater uncertainty in δB_{1} than for the other solutes.

Table 2.
Polarisations, dipole moments, and molar Kerr constants.

Solute	$\alpha \varepsilon_{1}{ }^{*}$	$\beta \dagger$	$\gamma \ddagger$	δ	${ }_{\mathbf{E}} P$ (c.c.) §	$\mu(\mathrm{D}){ }^{\text {* }}$	$10^{12} \infty\left({ }_{m} K_{2}\right)$
$\mathrm{CH}_{3} \cdot \mathrm{C}<\left[\mathrm{CH}_{2} \cdot \mathrm{O}\right]_{3}>\mathrm{P}$	$14 \cdot 6$	$0 \cdot 184$	0.034	220	33.6	$4 \cdot 15$	368
$\mathrm{CH}_{3} \cdot \mathrm{C} \leqslant\left[\mathrm{CH}_{2} \cdot \mathrm{O}\right]_{3} \cdots \mathrm{PO}$	$38 \cdot 6$	0.320	0.044	814	$32 \cdot 4$	$7 \cdot 10$	1519
$\mathrm{CH}_{3} \cdot \mathrm{C} \leq\left[\mathrm{CH}_{2} \cdot \mathrm{O}\right]_{3}>\mathrm{PS}$	$32 \cdot 0$	$0 \cdot 244$	0.054	1274	39.7	$6 \cdot 77$	2637
$\mathrm{CH}_{3} \cdot \mathrm{C} \leq\left[\mathrm{CH}_{2} \cdot \mathrm{O}\right]_{3}>\mathrm{As}$	$3 \cdot 72$	$0 \cdot 350$	0.042	73	$35 \cdot 7$	$2 \cdot 36$	160

* Quoted from Brown, Verkade, and Piper (J. Phys. Chem., 1961, 65, 2051). † Calc. from data of Brown et al. (loc. cit.). \ddagger Calc. from R_{D} (cf. Brown et al., loc. cit.) and β. § Extrapolation of the refractivities listed by Vogel and Cowan ($J ., 1943,16$) for trimethyl phosphate leads to $\infty R\left(\mathrm{Me}_{3} \mathrm{PO}_{4}\right)$ $={ }_{\mathrm{E}} P\left(\mathrm{Me}_{3} \mathrm{PO}_{4}\right)=27.4$ c.c., from which we obtain, after addition of four ${ }_{\mathrm{E}} P(\mathrm{C}-\mathrm{C})$ equivalents (cf. Le Fèvre and Steel, Chem. and Ind., 1961, 670), ${ }_{\mathbf{E}} P\left(\mathrm{CH}_{3} \cdot \mathrm{C}<\left[\mathrm{CH}_{2} \cdot \mathrm{O}\right]_{3}>\mathrm{PO}\right)=32 \cdot \mathbf{4}$ c.c. Gillis [Rev. Pure Appl. Chem. (Australia), 1960,10,21] gives $R_{\mathrm{D}}(\mathrm{P}=\mathrm{O})=-1.22$ c.c. and $R_{\mathrm{D}}(\mathrm{P}=\mathrm{S})=6.4$ c.c., from which we estimate the electronic polarisation of the molecules $\mathrm{CH}_{3} \cdot \mathrm{C}<\left[\mathrm{CH}_{2} \cdot \mathrm{O}\right]_{3}>\mathrm{P}$ and $\mathrm{CH}_{3} \cdot \mathrm{C}^{\prime}<\left[\mathrm{CH}_{2} \cdot \mathrm{O}\right]_{3}>\mathrm{PS}$ as 33.6 and 39.7 c.c., respectively [assuming that ${ }_{\mathrm{E}} P(\mathrm{P}=\mathrm{O})=0.95 R_{\mathrm{D}}(\mathrm{P}=\mathrm{O})$ and that ${ }_{\mathrm{E}} P(\mathrm{P}=\mathrm{S})=$ $0.95 R_{\mathrm{D}}(\mathrm{P}=\mathrm{S})$]. From the dispersion data of Gryszkiewicz-Trochimowski and Sikorski (Bull. Soc. chim. France, 1927, 41, 1570), $\mathbf{E} P\left[(\mathrm{MeO})_{\mathbf{3}} \mathrm{As}\right]$ is calculated as $30 \cdot 7$ c.c.; addition to this of four ${ }_{\mathbf{E}} P(\mathrm{C}-\mathrm{C})$ equivalents yields ${ }_{\mathrm{E}} P\left(\mathrm{CH}_{3} \cdot \mathrm{C}\left[\mathrm{CH}_{2} \cdot \mathrm{O}\right]_{3} \mathrm{As}\right)=35 \cdot 7$ c.c.

Discussion

The ellipsoid of polarisability for each of the molecules $\left.\mathrm{CH}_{3} \cdot \mathrm{C}^{2} \mathrm{CH}_{2} \cdot \mathrm{O}\right]_{3} \mathrm{X}$ can be regarded as one of revolution with $b_{1} \neq b_{2}=b_{3}$, i.e., b_{1} is located along the symmetry axis (see I); it follows that $\mu_{1}=\mu_{\mathrm{obs}}, \mu_{2}=\mu_{3}=0$. The equations relating the electronic polarisation and molar Kerr constant with the principal polarisabilities simplify to:

$$
\begin{gather*}
{ }_{\mathrm{E}} P=4 \pi \boldsymbol{N}\left(b_{1}+2 b_{2}\right) / 9 ; \tag{1}\\
{ }_{\mathrm{m}} K=4 \pi \boldsymbol{N}\left\{{ }_{\mathrm{D}} P\left(b_{1}-b_{2}\right)^{2} / \boldsymbol{k} T_{\mathrm{E}} P+\mu_{\mathrm{obs}}^{2}\left(b_{1}-b_{2}\right) / \boldsymbol{k}^{2} T^{2}\right\} / 405 . \tag{2}
\end{gather*}
$$

Substitution in equations (1) and (2) of $\mu_{\mathrm{obs}},{ }_{\mathrm{E}} P$, and ${ }_{\infty}\left({ }_{\mathrm{m}} K_{2}\right)$, from Table 2, and of ${ }_{\mathrm{D}} P$ (which we take as 1.05 times the corresponding R_{D} of ref. 5) leads to the molecular polarisability semi-axes listed in Table 3.

[^0]Table 3.
Polarisability semi-axes of the molecules $\mathrm{CH}_{3} \cdot \mathrm{C}<\left[\mathrm{CH}_{2} \cdot \mathrm{O}\right]_{3}>\mathrm{X}$.

	b_{1}	$b_{2}=b_{3}$	b_{1} / b_{2}
$\left.\mathrm{CH}_{3} \cdot \mathrm{C}^{2} \mathrm{CH}_{2} \cdot \mathrm{O}\right]_{3} \mathrm{P}$	1.460	1.268	$1 \cdot 15$
$\mathrm{CH}_{3} \cdot \mathrm{C}^{\left(\mathrm{CH}_{3} \cdot \mathrm{O}\right]_{3} \mathrm{PO}}$	$1 \cdot 466$	$1 \cdot 193$	$1 \cdot 23$
$\mathrm{CH}_{3}{ }^{\circ} \mathrm{C}\left[\mathrm{CH}_{2}{ }^{\circ} \mathrm{O}\right]_{3} \mathrm{PS}$	1.919	$1 \cdot 401$	$1 \cdot 37$
$\mathrm{CH}_{3}{ }^{-}\left[\mathrm{CH}_{2}{ }^{\circ} \mathrm{O}\right]_{3} \mathrm{As}$	1.585	$1 \cdot 330$	$1 \cdot 19$

Now b_{1} and b_{2} can be equated with the component bond and group polarisabilities through the following expressions:
and $\quad b_{1}+2 b_{2}=b_{1}^{0, \mathrm{x}}+2 b_{2}^{0_{2}^{\mathrm{x}}}+3 b_{\mathrm{L}}^{\mathrm{C}-0}+6 b_{\mathrm{T}}^{0-0}+4 b_{\mathrm{L}}^{\mathrm{C}} \mathrm{O}+8 b_{\mathrm{T}}^{0-0}+27 b_{\mathrm{L}}^{C-\mathrm{H}}$,
where ϕ and λ are the angles of inclination of each $b_{\mathrm{L}}^{\mathrm{G}-0}$ and each non-terminal carboncarbon bond axis, respectively, with the b_{1} direction. For the phosphorus compounds it seems reasonable to assume the following geometrical specifications: $r^{0-\mathrm{C}}=1.54 \AA$, $r^{-0}=1 \cdot 43 \AA, \angle C C C=\angle C C O=\angle C O P=$ tetrahedral, $r^{0-\mathrm{P}}=1 \cdot 57 \AA$, and $\angle \mathrm{OPO}=$ 106° (from an X-ray study ${ }^{6}$ of phosphoric acid), from which we deduce $\phi=0^{\circ}$ and $\lambda=70^{\circ}$. Very few analogous data exist for the arsenite: $r^{0-A s}$ in $\mathrm{As}_{4} \mathrm{O}_{6}$ is given in ref. 7 as $1.78 \AA$, and it seems likely that $0<\phi<10^{\circ}$; the polarisability semi-axes given below for the $\mathrm{O}_{3} \mathrm{As}$ group have been calculated by using the same values of ϕ and λ as for the phosphorus compounds.

Tables 2 and 3 show the following information: (a) The ratios $b_{1}: b_{2}$ are of the same order of magnitude, since the molecules are sterically very similar. (b) Electronic polarisation for the phosphate is smaller than for the phosphite, so that \sum^{b} (phosphate) $<$ $\sum b$ (phosphite); the addition to the phosphite of an oxygen atom does not significantly change the polarisability along the b_{1} direction: $\Delta b_{1}=b_{1}$ (phosphate) $-b_{1}$ (phosphite) $=$ $+0.006, \Delta b_{2}=-0.075$ (cf. Hacket and Le Fèvre's conclusions ${ }^{8}$ for phosphorus trichloride and oxychloride, where $\Delta b_{1}=-0.01 \dot{2}$ to +0.044 , and $\Delta b_{2}=-0.032$ to -0.060). (c) Addition of a sulphur atom to the phosphite results in an increase of polarisability directed predominantly along the symmetry axis: $\Delta b_{1}=+0 \cdot 459, \Delta b_{2}=+0.133$.

Verkade and Reynolds ${ }^{3}$ record that in the infrared spectra of these compounds the $\mathrm{P}=\mathrm{O}$ and $\mathrm{P}=\mathrm{S}$ stretching frequencies occur at 1325 and $800 \mathrm{~cm} .^{-1}$, respectively. Substitution of these values into the empirical equation ${ }^{9}$ of Le Fèvre (1959) together with the intercentre distances, $r^{\mathrm{P}=0}=1.45$ and $r^{\mathrm{P}=\mathrm{S}}=1.85$ (from Williams et al. ${ }^{10}$), leads to the following predicted longitudinal polarisabilities: $b_{\mathrm{L}}^{\mathrm{P}=\mathrm{O}}($ calc. $)=0 \cdot 484, b_{\mathrm{L}}^{\mathrm{P}=\mathrm{S}}($ calc. $)=0.928$. Significantly the difference ($b_{\mathrm{L}}^{\mathrm{E}=\mathrm{s}}$ calc. $-b_{\mathrm{L}}^{\mathrm{P}=0}$ calc.) equals +0.444 in good agreement with that found from experiment $\left\{b_{1}\left(\mathrm{CH}_{3} \cdot \mathrm{C}<\left[\mathrm{CH}_{2} \cdot \mathrm{O}\right]_{3}>\mathrm{PS}\right)-b_{1}\left(\mathrm{CH}_{3} \cdot \mathrm{C}<\left[\mathrm{CH}_{2} \cdot \mathrm{O}\right]_{3}>\mathrm{PO}\right)=\right.$ $+0 \cdot 453\}$.

Table 4.
Polarisability semi-axes of the groups $\mathrm{O}_{3} \mathrm{X}$.

	$\mathrm{O}_{3} \mathrm{P}$	$\mathrm{O}_{3} \mathrm{PO}$	$\mathrm{O}_{3} \mathrm{PS}$	$\mathrm{O}_{3} \mathrm{As}$
$b_{1} \ldots \ldots$	$0 \cdot 410$	0.416	$0 \cdot 869$	$0 \cdot 535$
$b_{2}=b_{3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	$0 \cdot 359$	$0 \cdot 284$	$0 \cdot 492$	$0 \cdot 421$

The " effective" longitudinal and transverse polarisabilities of the $\mathrm{O}-\mathrm{P}$ and $\mathrm{O}^{-} \mathrm{As}$

[^1]bonds in the phosphite and arsenite can be deduced from the $\mathrm{O}_{3} \mathrm{P}$ and O_{3} As group values of Table 4 by means of the equations:
\[

$$
\begin{gather*}
b_{\mathrm{B}}^{0_{\mathrm{a}}^{\mathrm{a} \mathrm{X}}+2 b_{\mathrm{a}}^{0_{\mathrm{o}} \mathrm{X}}=3 b_{\mathrm{L}}^{0-\mathrm{x}}+6 b_{\mathrm{R}}^{0-\mathrm{x}},} \tag{5}\\
b_{1}^{0, \mathrm{x}}=3 b_{\mathrm{L}}^{0-\mathrm{x}} \cos ^{2} \psi+3 b_{\mathrm{T}}^{0-\mathrm{x}} \sin ^{2} \psi,
\end{gather*}
$$
\]

and
where ψ, the angle which the longitudinal $\mathrm{O}^{-} \mathrm{P}$ or $\mathrm{O}-$ As axis makes with the b_{1} direction, is taken as 68° (by analogy with Furberg's data). Solution yields $b_{\mathrm{L}}^{0-\mathrm{P}}=0 \cdot 086, b_{\mathrm{T}}^{\mathrm{O}-\mathrm{P}}=$ $0 \cdot 145, b_{\mathrm{L}}^{\mathrm{O}-\mathrm{As}}=0.066, b_{\mathrm{T}}^{\mathrm{OAS}}=0 \cdot 196$. The "effective" bond semi-axes thus resolved include, of course, the polarisability contributions of the " lone-pair" electrons.

[^0]: ${ }^{5}$ Brown, Verkade, and Piper, J. Phys. Chem., 1961, 65, 2051.
 7 U 2

[^1]: ${ }^{6}$ Furberg, Acta Chem. Scand., 1955, 9, 1557.
 7 Sutton et al., " Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Spec. Publ. No. 11, 1958.
 ${ }^{8}$ Hacket and Le Fèvre, $J ., 1961,2612$.
 ${ }^{9}$ Le Fèvre, Proc. Chem. Soc., 1959, 363.
 ${ }^{10}$ Williams, Sheridan, and Gordy, J. Chem. Phys., 1952, 20, 164.

